УДК 577.118:582.933

Мяделец М.А, Сиромля Т.И.

Федеральное государственное бюджетное учреждение науки Институт почвоведения и агрохимии СО РАН, Новосибирск, Россия.

Охлопкова О.В., Качкин К.В.

Новосибирский государственный медицинский университет, Новосибирск, Россия.

ЭЛЕМЕНТНЫЙ ХИМИЧЕСКИЙ СОСТАВ ЛИСТЬЕВ И ЛЕКАРСТВЕННЫХ ФОРМ ПОДОРОЖНИКА БОЛЬШОГО (*PLANTAGO MAJOR* L.), РОИЗРАСТАЮЩЕГО В АНТРОПОГЕННО НАРУШЕННЫХ МЕСТООБИТАНИЯХ

Ключевые слова: элементный состав, *Plantago major* L., листья, водные и водноспиртовые извлечения.

В настоящее время интерес к использованию растительного сырья в медицине неуклонно растет, что обусловлено сочетанием хорошего терапевтического эффекта фитопрепаратов с их относительной безвредностью [7]. В свою очередь уменьшаются территории, не испытывающие антропогенной нагрузки, и в связи с этим возникает необходимость исследования возможности применения лекарственных растений, произрастающих на антропогенно нарушенных местообитаниях.

 $Plantago\ major\ L.\ -$ подорожник большой является ценным лекарственным растением, применяющимся в качестве отхаркивающего средства при заболеваниях дыхательных путей, а также в составе комплексной терапии. Листья $P.\ major$ включены в Государственную фармакопею ($\Gamma\Phi$) [4] как лекарственное сырье. Данный вид лекарственного растения является одним из наиболее известных и характерных представителей урбанофлоры.

Целью данной работы являлось определение элементного химического состава листьев, водных и водно-спиртовых извлечений $P.\ major$, произрастающего в антропогенно нарушенных местообитаниях, а также соответствия показателям $\Gamma\Phi$ [4] и СанПиН 2.3.2.1078-01 [3] по допустимости к использованию в медицинских целях.

Объектом исследования послужили образцы растительного сырья (листья) *Р. тајог*, собранные в фазу цветения растений в вегетационные периоды 2011-2012 гг. на территории крупного промышленного центра – г. Новосибирска (табл. 1). В качестве объекта сравнения использовалось аптечное сырье производства ЗАО Фирма «Здоровье» г. Москва Р №003120/01. Отбор образцов проводили общепринятыми методами. В каждой точке отбирали не менее 3 средних проб, дважды в течение вегетационного периода. Ниже представлены средние арифметические значения (n=12).

Таблица 1 Характеристика места сбора исследуемых образцов

№ точки	Место сбора	L от трассы, м
I	п. Плотниково (НСО)	5-10
II	Ост. «Куприна», ул. Никитина	4-10
III	Ост. «Сибирская ярмарка», Красный проспект	2-10
IV	Ост. «Горбольница», ул. Залесского	8-10
V	Ост. «Карьер Борок», ул. Большевистская	5-10

Общую зольность и количество золы, не растворимой в 10% HCl, анализировали по общепринятой методике [4]. Определяли общее содержание химических элементов (XЭ) в лекарственном сырье, а также их количество в солянокислых экстрактах, водных отварах и спиртовых настоях. В работе использовался метод атомно-абсорбционной

спектрометрии (прибор Квант-2A). Содержание ХЭ приведено в пересчете на воздушносухие образцы. Все анализы выполнены в трех аналитических повторностях.

Таблица 2

Содержание ХЭ в сырье Р. major

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Š	,01						Химичес	Химический элемент	HT					
	HOL	КИ	Ca	Cd	Cu	Fe	Li	K	Mg	Mn	Na	Ni	Pb	Sr	Zn
		1	31179	0,181	12,51	381	1,61	23144	2568	48,3	108	1,66	1,58	40,1	30,41
a 58 73 38 68 89 77 83 86 70 26 75 1 31996 0,216 9,68 425 2,49 24596 3595 44,1 58 1,46 1,53 67,8 2 26858 0,111 6,71 358 1,97 24200 2634 36,1 52 1,46 1,53 67,8 a 84 51 69 84 79 98 73 82 1,60 93 76 73 1 24403 0,171 16,43 362 1,44 28884 2193 35,2 1,00 1,00 49,7 76 2 18146 0,147 5,47 273 1,11 26862 1754 27,5 88 1,32 20,1 26 76 36,9 a 74 86 33 75 77 93 86 76 1,69 30,1 1,69	Н	2	18146	0,132	4,70	258	1,31	20570	1974	40,0	92	1,16	0,41	29,9	18,65
		α	28	73	38	89	82	68	77	83	98	70	76	75	61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	31996	0,216	89,6	425	2,49	24596	3595	44,1	58	1,46	1,53	67,8	41,29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	П	2	26858	0,111	6,71	358	1,97	24200	2634	36,1	52	1,36	1,16	49,7	37,65
		α	84	51	69	84	62	86	73	82	90	93	92	73	91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	24403	0,171	16,43	362	1,44	28884	2193	35,2	102	1,40	1,63	28,9	50,11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	18146	0,147	5,47	273	1,11	26862	1754	27,5	88	1,32	0,45	20,1	33,00
		α	74	98	33	75	77	93	80	78	87	94	27	70	99
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	26712	0,174	13,81	331	1,69	29759	2769	36,2	85	1,65	1,78	39,9	49,16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	2	23470	0,134	6,04	226	1,31	29282	2255	31,4	77	1,40	0,48	30,3	36,33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α	88	77	44	89	78	86	81	87	91	85	27	92	74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	29615	0,265	15,86	579	2,81	21979	4314	44,5	148	1,84	1,58	87,6	68,48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	>	2	25809	0,160	9,55	397	2,13	21027	3635	37,8	133	1,62	0,34	63,0	61,69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α	87	09	09	69	9/	96	84	82	90	88	22	72	90
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	31564	0,288	11,62	518	3,34	23524	2806	48,2	135	1,58	1,93	87,5	34,85
α 73 69 68 70 79 98 78 84 97 92 21 75		2	23107	0,198	7,89	363	2,64	22990	2194	40,6	131	1,46	0,40	65,3	31,60
		α	73	69	89	70	42	86	2/8	84	97	95	21	75	91

Примечание. 1 – общее содержание ХЭ в растительном сырье, мг/кг; 2 – содержание ХЭ, извлекаемых 10 %-ным раствором соляной кислоты, мг/кг; $\alpha - \kappa_0$ фициент извлечения X3, %. Таблица 3

Содержание ХЭ в извлечениях из сырья Р. major

	Zn	6,72±0,67	4,88	8,59	13±1	8	17	2,45±0,09	2,20	2,59	5±1	3	7
	Sr	22,3±4,9	9,4	36,0	33±2	29	41	7,6±1,8	3,6	10,1	13±2	6	19
	Pb	0,1±0,01	0,10	0,11	6±0,2	5	9	0,91±0,20	0,57	1,33	54±13	30	81
	Ni	80,0±69,0	0,55	0,97	42±5	30	61	0,68±0,08	0,54	0,83	43±6	30	57
	Na	20∓2	39,0	64	41±3	28	47	44±3	38	49	39±4	28	47
MT/KT	Mn	11,5±1,8	7,0	16,0	27±3	16	35	4,4±1,3	2,8	8,1	11±2	9	17
элемент, м	Mg	1216±168	693	1711	38±4	28	50	786±118	480	1019	26±2	22	32
Химический элемент, мг/кг	K	14094±477	13090	15620	57±3	48	29	10845±708	9595	12395	43±5	34	56
Хи	Li	0,65±0,10	0,42	0,89	27±1	22	30	0,36±0,10	0,19	0,61	15±1	12	18
	Fe	1,65±0,07	1,44	1,80	0,4±0,01	0,3	0,5	0,85±0,07	99,0	1,02	0,2±0,03	0,1	0,3
	Cu	0,69±0,04	0,58	0,78	5±1	4	7	0,60±0,03	0,53	0,65	4±1	3	5
	Cd	$0,152\pm0,004$	0,138	0,160	6∓69	51	90	0,044±0,006	0,026	0,054	20±4	15	32
	Ca	6354±1592	858	10670	23±5	13	36	2814±786	516	4076	10±2	8	14
Лекарственная	форма	M±m	min	max	M±m	min	max	M±m	min	max	M±m	min	max
Лекарс	ф	d	TBa	3	پ	%		Йо	эстов	Н	i	ಕ %	

Таблица 4

	Содержание биол	Содержание биологически активных веществ и зольность сырья <i>P. major</i>	х веществ и зольно	сть сырья Р. тајог
№ образца	Дубильные вещества, %	Флавонолы, %		Содержание золы, %
			общая	нерастворимая в 10 %-ном р-ре НС1
I	5,48	0,22	18,9	4,0
II	6,79	0,74	21,3	3,2
III	5,20	0,52	17,2	4,6
NI	5,48	0,37	19,0	3,6
Λ	6,89	1,05	22,1	6,4
Аптечное сырье	4,19	0,62	19,4	4.2

Для оценки степени перехода химических элементов в фитопрепараты был рассчитан коэффициент извлечения – α (отношение содержания ХЭ в извлечении, мг/кг к валовому содержанию ХЭ в растительном сырье, мг/кг × 100%). Были изучены следующие лекарственные формы: отвары и настои (экстрагент – 40% этанол). Извлечения получены согласно общепринятым методикам [4]. Соотношение сырье – экстрагент 1:10. В полученных экстрактах определяли содержание фенольных соединений (флавонолов, дубильных веществ). Флавонолы определяли спектрофотометрическим методом [1]. Количество флавонолов в пробе рассчитывали по калибровочному графику, построенному по рутину. Содержание дубильных веществ определяли спектрофотометрическим методом с применением раствора аммония молибденовокислого [9]. Содержание полисахаридов В сырье определялось гравиметрическим методом [4].

При сравнении содержания тяжелых металлов (ТМ) в исследуемых образцах растительного сырья с показателями предельно допустимых концентраций (ПДК) СанПиН 2.3.2.1078-01 [3] превышения допустимых значений не отмечается. Анализируя содержание ХЭ в образцах сырья из разных точек, следует отметить, что наиболее варьирует количество Li (V=34%), Na (V=31%) и Zn (V=30%). Наиболее постоянным Pb (V=9%),что, возможно, содержанием отличается является проявлением физиологического барьера растений к ТМ [8]. Также незначительной изменчивостью количественного содержания характеризуются Са и Ni (V=10%). Достоверных отличий между содержанием ХЭ в аптечном сырье и сырье, собранном в исследуемых точках, не установлено. Степень извлечения элементов 10% раствором соляной кислоты (табл. 2) несколько отличается для разных ХЭ, максимально извлекаются такие элементы как К, Na, Ni (α = 86-98 %), менее – Cu (α = 33-68%) и Pb (α = 21-76%).

Важной характеристикой лекарственного растительного сырья является степень перехода химических элементов в фитопрепараты. В связи с этим, было проанализировано содержание ХЭ в наиболее широко использующихся лекарственных формах – отварах и настоях (табл. 3). Полученные результаты свидетельствуют о том, что в водные извлечения (отвар) в значительной степени переходят K, Mg, Na, Sr, а также Cd и Ni. Низкой степенью извлечения характеризуются Cu, Pb, Fe, что подтверждает ранее полученные данные о содержании в листьях *P. major* данных элементов в прочносвязанной форме [6].

Существуют данные о том, что в водно-спиртовые растворы ТМ из растительного сырья извлекаются в меньших количествах, чем в отвары [5]. Полученные нами результаты в целом близки, но есть и разница — одинаково извлекались Си, Na и Ni, намного сильнее извлекался Рb. Возможно, эта разница связана с тем, что содержание XЭ в извлечениях зависит от вида растительного сырья, режима настаивания, а также ряда других факторов.

Учитывая, что содержание общей золы (табл. 4) для данного вида сырья не должно превышать 20% [4], отмечается несоответствие данного показателя у растений, отобранных во II (21,3%) и V (22,1%) точках. Содержание золы, не растворимой в 10% HCl, не соответствует нормативу (не более 6% [4]) только в точке V (6,4%). Это свидетельствует о повышенной запыленности данных образцов. Следовательно, такое сырье не может быть использовано в медицинских целях.

Кроме элементного состава, в исследуемых образцах сырья было проанализировано содержание некоторых групп биологически активных веществ (БАВ). Содержание полисахаридов во всем исследованном сырье соответствует требованиям $\Gamma\Phi$ [4], то есть составляет не менее 12%, а в некоторых случаях даже превосходит показатели аптечного сырья (например, 17,5 % в точке IV и 14,5 % в аптечном сырье). По данным других исследователей [2], количество полисахаридов в листьях P. major, произрастающего на территориях разной степени антропогенного воздействия, колеблется

в диапазоне 12,3-24,4%, выявлена зависимость биосинтеза полисахаридов от загрязнения растений ТМ.

Количество дубильных веществ (табл. 4) изменяется в диапазоне 5,48-6,89% и в среднем несколько выше, чем в аптечном сырье. Максимальное содержание флавонолов (0,74-1,05%) наблюдается в образцах с превышенным содержанием общей золы.

Возможными причинами этого могут быть как техногенное воздействие, так и другие факторы. Так, экспериментально показано, что в ответ на техногенное воздействие биосинтез флавоноидов в листьях *Potentilla fruticosa* L. снижается по сравнению с контролем [10].

Растительное сырье *P. major*, выращенное даже на загрязненных ТМ территориях, является экологически чистым по содержанию ТМ, лекарственно ценным по содержанию полисахаридов и в целом соответствует образцам аптечного сырья. Превышение нормативных показателей в нескольких точках установлено лишь для содержания золы, что свидетельствует о повышенной запыленности данных образцов растительного сырья.

Библиография.

- 1. Беликов В.В., Шрайбер М.С. Методы анализа флавоноидных соединений // Фармация. 1970. № 1. С. 66–72.
- 2. Великанова Н. А. Экологическая оценка состояния лекарственного растительного сырья (на примере *POLYGONUM AVICULARE* L. и *PLANTAGO MAJOR* L.) в урбоусловиях города Воронежа и его окрестностей: Автореф. дис. ... канд. биол. наук. Воронеж. 2013. 21 с.
- 3. Гигиенические требования безопасности и пищевой ценности пищевых продуктов СанПиН 2.3.2.1078-01. М., 2002
- 4. Государственная фармакопея СССР XI издания. Вып.1. Общие методы анализа. М. 1987. С. 286-287
- 5. Гравель И. В. Региональные проблемы экологической оценки лекарственного растительного сырья и фитопрепаратов на примере Алтайского края: Автореф. дисс. ... д-ра. фарм. наук. М., 2005. 48 с.
- 6. Зубарева К.Э., Качкин К.В., Сиромля Т.И. Влияние выбросов автомобильного транспорта на элементный состав листьев подорожника большого // Химия растительного сырья. 2011. №2. С. 159-164.
- 7. Куркин В.А. Фармакогнозия: учебник для студентов фармацевтических вузов. Самара. 2007. 1239 с.
- 8. Титов А.Ф., Таланова В.В., Казнина Н.М., Лайдинен Г.Ф. Устойчивость растений к тяжелым металлам. Петрозаводск. 2007. 172 с.
- 9. Федосеева Л.М. Изучение дубильных веществ подземных и надземных вегетативных органов бадана толстолистого (Bergenia crassifolia (L.) fitsch.), произрастающего на Алтае // Химия растительного сырья. 2005. № 2. С. 45-50.
- 10. Храмова Е.П., Высочина Г.И. Состав и содержание флавоноидов в Potentilla fruticosa (Rosaceae) в условиях техногенного загрязнения в г. Новосибирске // Растительные ресурсы. 2010. Т. 46. Вып. 2. С.